Step 1: State the formula for mean free path (\(\lambda\)). \[ \lambda = \frac{kT}{\sqrt{2}\pi d^2 P} \] where \(k\) is Boltzmann's constant, \(T\) is temperature in Kelvin, \(d\) is the molecular diameter, and \(P\) is the pressure in Pascals.
Step 2: Rearrange the formula to solve for pressure (P). \[ P = \frac{kT}{\sqrt{2}\pi d^2 \lambda} \]
Step 3: List the given values and convert them to SI units. - \( T = 25^\circ\text{C} = 25 + 273.15 = 298.15 \) K - \( \lambda = 2.63 \times 10^{-5} \) m - Radius \( r = 2.56 \times 10^{-10} \) m, so diameter \( d = 2r = 5.12 \times 10^{-10} \) m - \( k = 1.38 \times 10^{-23} \) J/K
Step 4: Substitute the values and calculate the pressure in Pascals. \[ P = \frac{(1.38 \times 10^{-23})(298.15)}{\sqrt{2}\pi (5.12 \times 10^{-10})^2 (2.63 \times 10^{-5})} \] \[ P = \frac{4.114 \times 10^{-21}}{1.414 \times 3.1416 \times (2.621 \times 10^{-19}) \times (2.63 \times 10^{-5})} \] \[ P = \frac{4.114 \times 10^{-21}}{3.06 \times 10^{-23}} \approx 1344.4 \text{ Pa} \]
Step 5: Convert the pressure from Pascals to mm of mercury. We know that 1 atm = 760 mmHg = 101325 Pa. Therefore, \( 1 \text{ Pa} = \frac{760}{101325} \) mmHg. \[ P_{\text{mmHg}} = 1344.4 \times \frac{760}{101325} \approx 1344.4 \times 0.0075 = 10.08 \text{ mmHg} \] This is approximately 10 mm of mercury.