Comprehension

When observed over a long period of time, a time series data can predict trends that can forecast increase, decrease, or stagnation of a variable under consideration. The table below shows the sale of an item in a district during 1996–2001:

\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \textbf{Year} & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline \textbf{Sales (in lakh ₹)} & 6.5 & 5.3 & 4.3 & 6.1 & 5.6 & 7.8 \\ \hline \end{array} \]

Question: 1

Determine the equation of the straight-line trend.

Show Hint

When calculating a straight-line trend using least squares: 
- Assign coded time values (\( t \)) to simplify calculations. 
- Use the formulas \( a = \frac{\sum y}{N} \) and \( b = \frac{\sum (t \cdot y)}{\sum t^2} \).

Updated On: Feb 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Assign coded time variables (\( t \)) for convenience:
Let \( t = -2, -1, 0, 1, 2, 3 \) for the years 1996 to 2001, respectively.

Step 2: Tabulate the data:
 

Step 3: Use the least squares formula for straight-line trend:

\[ y = a + bt, \]

where:

\[ a = \frac{\sum y}{N}, \quad b = \frac{\sum (t \cdot y)}{\sum t^2}. \]

Substitute the values:

\[ a = \frac{\sum y}{N} = \frac{35.6}{6} = 5.93, \quad b = \frac{\sum (t \cdot y)}{\sum t^2} = \frac{22.4}{19} = 1.18. \]

Step 4: Write the equation:

\[ y = 5.93 + 1.18t. \]

Was this answer helpful?
0
0
Question: 2

Tabulate the trend values of the years and compute the expected sales trend for the year 2002.

Show Hint

To calculate trend values for future years, extend the coded time variable \( t \) and substitute into the trend equation.
Updated On: Feb 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Use the trend equation \( y = 5.93 + 1.18t \).

Step 2: Compute the trend values for \( t = -2, -1, 0, 1, 2, 3 \):

\[ \begin{array}{|c|c|c|} \hline \textbf{Year} & t & \textbf{Trend Value (y)} \\ \hline 1996 & -2 & 5.93 + 1.18(-2) = 3.57 \\ 1997 & -1 & 5.93 + 1.18(-1) = 4.75 \\ 1998 & 0 & 5.93 + 1.18(0) = 5.93 \\ 1999 & 1 & 5.93 + 1.18(1) = 7.11 \\ 2000 & 2 & 5.93 + 1.18(2) = 8.29 \\ 2001 & 3 & 5.93 + 1.18(3) = 9.47 \\ \hline \end{array} \]

Step 3: Compute the trend value for 2002 (\( t = 4 \)):

\[ y = 5.93 + 1.18(4) = 10.65. \]

Final Answer:

  • Trend values for 1996–2001 are \( 3.57, 4.75, 5.93, 7.11, 8.29, 9.47 \).
  • Expected sales trend for 2002 is \( 10.65 \) lakh ₹.
Was this answer helpful?
0
0
Question: 3

Fit a straight-line trend by the method of least squares for the following data:

\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Year} & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\ \hline \textbf{Profit (₹ 000)} & 114 & 130 & 126 & 144 & 138 & 156 & 164 \\ \hline \end{array} \]

Show Hint

For fitting straight-line trends with least squares, ensure you assign proper time codes \( t \) and calculate \( a \) and \( b \) systematically using the given formulas.
Updated On: Feb 11, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Assign \( t \): Let \( t = -3, -2, -1, 0, 1, 2, 3 \) for the years 2004 to 2010.

Step 2: Tabulate the data:

\[ \begin{array}{|c|c|c|c|c|} \hline \textbf{Year} & \textbf{Profit (y)} & t & t^2 & t \cdot y \\ \hline 2004 & 114 & -3 & 9 & -342 \\ 2005 & 130 & -2 & 4 & -260 \\ 2006 & 126 & -1 & 1 & -126 \\ 2007 & 144 & 0 & 0 & 0 \\ 2008 & 138 & 1 & 1 & 138 \\ 2009 & 156 & 2 & 4 & 312 \\ 2010 & 164 & 3 & 9 & 492 \\ \hline \textbf{Total} & 972 & 0 & 28 & 214 \\ \hline \end{array} \]

Step 3: Use the least squares formula:

\[ y = a + bt, \]

where:

\[ a = \frac{\sum y}{N}, \quad b = \frac{\sum (t \cdot y)}{\sum t^2}. \]

Substituting the values:

\[ a = \frac{972}{7} = 138.86, \quad b = \frac{214}{28} = 7.64. \]

Step 4: Write the equation:

\[ y = 138.86 + 7.64t. \]
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions