In the given cycle ABCDA, the heat required for an ideal monoatomic gas will be:
List-I | List-II | ||
P | The value of \(I1\) in Ampere is | I | \(0\) |
Q | The value of I2 in Ampere is | II | \(2\) |
R | The value of \(\omega_0\) in kilo-radians/s is | III | \(4\) |
S | The value of \(V_0\) in Volt is | IV | \(20\) |
200 |
Let \(\gamma_1\)be the ratio of molar specific heat at constant pressure and molar specific heat at constant volume of a monoatomic gas and \(\gamma_2\) be the similar ratio of diatomic gas. Considering the diatomic gas molecule as a rigid rotator, the ratio, \(\frac{\gamma_1}{\gamma_2}\) is :
The pressure of a gas changes linearly with volume from $A$ to $B$ as shown in figure If no heat is supplied to or extracted from the gas then change in the internal energy of the gas will be Is
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : 02 is liberated in the non-cyclic photophosphorylation.
Reason (R) : Liberation of oxygen is due to photolysis of water.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : The Cro-Magnon man was the direct ancestor of the living modern man.
Reason (R) : Cro-Magnon man had slightly prognathous face.
In the light of the above statements, choose the correct answer from the options given below
Specific heat of a solid or liquid is the amount of heat that raises the temperature of a unit mass of the solid through 1°C.
The Molar specific heat of a solid or liquid of a material is the heat that you provide to raise the temperature of one mole of solid or liquid through 1K or 1°C.
The volume of solid remains constant when heated through a small range of temperature. This is known as specific heat at a constant volume. It is denoted as CV.
The pressure of solid remains constant when heated through a small range of temperature. This is known as specific heat at constant pressure which can be denoted as CP.