To find the resistance of a galvanometer in series or shunted circuits, use the principles of current division and Ohm's law.
Solution:
Let \( G \) be the resistance of the galvanometer. For the shunted circuit, the total current \( I \) is given by:
\[
I = 250 \, \text{mA} = 0.25 \, \text{A}.
\]
The current through the galvanometer is:
\[
I_G = \frac{I \times S}{G + S}.
\]
Substituting \( S = 5 \, \Omega \) and \( I_G = 0.25 \, \text{A} \):
\[
0.25 = \frac{0.25 \times 5}{G + 5}.
\]
Simplifying:
\[
G + 5 = 5 \quad \Rightarrow \quad G = 0 \, \Omega.
\]
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}