Let \( I_0 \) be the intensity of unpolarized light incident on the first polaroid.
- The transmitted light intensity after passing through the first polaroid is:
\(I_1 = \frac{I_0}{2}.\)
- The intensity after passing through the second polaroid at an angle \( \theta \) is:
\(I_2 = I_1 \cos^2 \theta = \frac{I_0}{2} \cos^2 \theta.\)
- Similarly, for the third polaroid rotated by \( 90^\circ - \theta \), the transmitted intensity is:
\(I_3 = I_2 \cos^2 (90^\circ - \theta) = \frac{I_0}{2} \cos^2 \theta \sin^2 \theta.\)
- The intensity will be maximum when \( \sin 2\theta = 1 \), which occurs at \( \theta = 45^\circ \).
The Correct answer is: \(45^\circ\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: