\[ E = \phi + K_{\text{max}} \]
\[ \phi = \frac{hc}{\lambda_0} \]
\[ K_{\text{max}} = eV_0 \]
\[ 8e = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} \quad \text{(i)} \]
\[ 2e = \frac{hc}{3\lambda} - \frac{hc}{\lambda_0} \quad \text{(ii)} \]
On solving (i) & (ii),
\[ \lambda_0 = 9\lambda \]
An alpha particle moves along a circular path of radius 0.5 mm in a magnetic field of \( 2 \times 10^{-2} \, \text{T} \). The de Broglie wavelength associated with the alpha particle is nearly
(Planck’s constant \( h = 6.63 \times 10^{-34} \, \text{Js} \))
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: