\[ E = \phi + K_{\text{max}} \]
\[ \phi = \frac{hc}{\lambda_0} \]
\[ K_{\text{max}} = eV_0 \]
\[ 8e = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} \quad \text{(i)} \]
\[ 2e = \frac{hc}{3\lambda} - \frac{hc}{\lambda_0} \quad \text{(ii)} \]
On solving (i) & (ii),
\[ \lambda_0 = 9\lambda \]
An alpha particle moves along a circular path of radius 0.5 mm in a magnetic field of \( 2 \times 10^{-2} \, \text{T} \). The de Broglie wavelength associated with the alpha particle is nearly
(Planck’s constant \( h = 6.63 \times 10^{-34} \, \text{Js} \))