Step 1: Use relation for momentum from motion in magnetic field.
\[
r = \frac{mv}{qB} \Rightarrow mv = qBr
\]
Step 2: Use de Broglie wavelength formula.
\[
\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{qBr}
\]
Step 3: Insert known values.
\[
q = 2 \times 1.6 \times 10^{-19} \, \text{C}, \, B = 2 \times 10^{-2} \, \text{T}, \, r = 0.5 \, \text{mm} = 0.5 \times 10^{-3} \, \text{m}
\]
\[
\lambda = \frac{6.63 \times 10^{-34}}{2 \times 1.6 \times 10^{-19} \cdot 2 \times 10^{-2} \cdot 0.5 \times 10^{-3}} = \frac{6.63 \times 10^{-34}}{3.2 \times 10^{-24}} = 2.07 \times 10^{-10} \, \text{m}
\]
\[
\lambda \approx 2.1 \, \text{\AA}
\]
Step 4: Select the correct option.
The de Broglie wavelength is approximately 2.1 \AA, which matches option (4).