Step 1: Lens Maker’s Formula in Air
The focal length \( f \) of a convex lens in air is given by the lens maker's formula:
\[
\frac{1}{f} = (n_{\text{lens}} - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
\]
where \( n_{\text{lens}} \) is the refractive index of the lens material.
Step 2: Lens Maker’s Formula in a Liquid Medium
When the lens is placed in a liquid with refractive index \( n_{\text{liquid}} \), the new focal length \( f' \) is:
\[
\frac{1}{f'} = \left( \frac{n_{\text{lens}}}{n_{\text{liquid}}} - 1 \right) \left( \frac{1}{R_1} - \frac{1}{R_2} \right)
\]
Since the focal length doubles (\( f' = 2f \)), we equate:
\[
\frac{1}{2f} = \left( \frac{n_{\text{lens}}}{n_{\text{liquid}}} - 1 \right) \frac{1}{f}
\]
Simplifying,
\[
\frac{1}{2} = \frac{n_{\text{lens}}}{n_{\text{liquid}}} - 1
\]
Step 3: Solving for \( n_{\text{liquid}} \)
Rearranging,
\[
\frac{n_{\text{lens}}}{n_{\text{liquid}}} = \frac{3}{2}
\]
Since \( n_{\text{liquid}} \) is 80% of \( n_{\text{lens}} \),
\[
n_{\text{liquid}} = 0.8 n_{\text{lens}}
\]
Substituting,
\[
\frac{n_{\text{lens}}}{0.8 n_{\text{lens}}} = \frac{3}{2}
\]
\[
\frac{1}{0.8} = \frac{3}{2}
\]
\[
n_{\text{liquid}} = 1.2
\]
Step 4: Conclusion
Thus, the refractive index of the liquid is \( 1.2 \).