The heat transfer equation is given by Fourier’s Law:
\[
Q = \frac{k A \Delta T}{L} t
\]
Heat required to melt ice:
\[
Q = m L
\]
Given:
\[
m = 5g = 5 \times 10^{-3} kg, \quad L = 80 \text{ cal/g} = 80 \times 4.18 \text{ J/g}
\]
\[
Q = 5 \times 10^{-3} \times 80 \times 4.18
\]
\[
= 1.672 \text{ kJ} = 1672 \text{ J}
\]
Now, using Fourier’s equation:
\[
1672 = \frac{k \times 4 \times 10^{-4} \times 100}{0.2} \times 60
\]
Solving for \( k \), we get:
\[
k = 140 \text{ Wm\(^{-1}\)K\(^{-1}\)}
\]
Thus, the correct answer is 140.