Step 1: Recall powers of $i$.
\[
i^1 = i,\quad i^2 = -1,\quad i^3 = -i,\quad i^4 = 1
\]
Step 2: Use cyclic nature.
Powers of $i$ repeat every 4 terms.
Step 3: Reduce the exponent.
\[
99 \div 4 = 24 \text{ remainder } 3
\]
Step 4: Find the value.
\[
i^{99} = i^3 = -i
\]