Step 1: Apply the product rule.
If $y = uv$, then
\[
\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}
\]
Step 2: Identify functions.
Let $u = e^{2x}$ and $v = \sin x$.
Step 3: Differentiate each part.
\[
\frac{du}{dx} = 2e^{2x}, \quad \frac{dv}{dx} = \cos x
\]
Step 4: Substitute in product rule.
\[
\frac{d}{dx}(e^{2x}\sin x) = e^{2x}\cos x + \sin x \cdot 2e^{2x}
\]
\[
= e^{2x}(\cos x + 2\sin x)
\]