Question:

The value of $\sin 20^\circ \times \sin 40^\circ \times \sin 60^\circ \times \sin 80^\circ$ is

Show Hint

Products of sine functions often simplify using standard trigonometric identities.
Updated On: Jan 20, 2026
  • $\frac{3}{16}$
  • $\frac{1}{8}$
  • $\frac{3}{8}$
  • $\frac{3}{32}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Use known trigonometric identity.
\[ \sin 20^\circ \sin 40^\circ \sin 60^\circ \sin 80^\circ \]
Step 2: Substitute value of $\sin 60^\circ$.
\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \]
Step 3: Apply product identity.
\[ \sin 20^\circ \sin 40^\circ \sin 80^\circ = \frac{\sqrt{3}}{8} \]
Step 4: Final calculation.
\[ = \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2} = \frac{3}{16} \]
Was this answer helpful?
0
0