To determine the lateral shift of a light ray refracted through a parallel-sided glass slab, we need to consider the geometric path taken by the ray as well as the optical principles governing refraction.
Concept: When a light ray passes through a parallel-sided glass slab, it undergoes refraction at both the air-slab interface and the slab-air interface. The ray exits parallel to its original path but displaced sideways. This displacement is what we refer to as the "lateral shift."
The lateral shift \( S \) is determined by the geometry of the setup, given by the formula:
\(S = \frac{h \cdot \sin(i - r)}{\cos r}\)
where:
Derivation:
This matches the correct option, ensuring that it accounts for both the angle of incidence and refraction. The ray ultimately emerges parallel to the initial path but laterally shifted.
Conclusion: The correct formula for the lateral shift in a parallel-sided glass slab when placed in an air medium is \(\frac{h \cdot \sin(i - r)}{\cos r}\), and thus the correct answer is the fourth option given:
\(\frac{h \cdot \sin(i - r)}{\cos r}\)
To find the lateral shift \(d\) of a ray refracted through a parallel-sided glass slab of thickness \(h\), we use the geometry of refraction. When a light ray enters a glass slab with an angle of incidence \(i\) and refracts at an angle \(r\), the path of the light ray inside the slab creates a lateral shift.
The lateral shift \(d\) is given by:
\(d = \frac{h \sin(i-r)}{\cos r}\)
Here's how we derive the formula:
\(d = h \sec r \cdot \sin(i-r) = \frac{h \sin(i-r)}{\cos r}\)
Therefore, the correct answer is \(\frac{h \, \sin(i - r)}{\cos r}\).
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.