To determine the lateral shift of a light ray refracted through a parallel-sided glass slab, we need to consider the geometric path taken by the ray as well as the optical principles governing refraction.
Concept: When a light ray passes through a parallel-sided glass slab, it undergoes refraction at both the air-slab interface and the slab-air interface. The ray exits parallel to its original path but displaced sideways. This displacement is what we refer to as the "lateral shift."
The lateral shift \( S \) is determined by the geometry of the setup, given by the formula:
\(S = \frac{h \cdot \sin(i - r)}{\cos r}\)
where:
Derivation:
This matches the correct option, ensuring that it accounts for both the angle of incidence and refraction. The ray ultimately emerges parallel to the initial path but laterally shifted.
Conclusion: The correct formula for the lateral shift in a parallel-sided glass slab when placed in an air medium is \(\frac{h \cdot \sin(i - r)}{\cos r}\), and thus the correct answer is the fourth option given:
\(\frac{h \cdot \sin(i - r)}{\cos r}\)
To find the lateral shift \(d\) of a ray refracted through a parallel-sided glass slab of thickness \(h\), we use the geometry of refraction. When a light ray enters a glass slab with an angle of incidence \(i\) and refracts at an angle \(r\), the path of the light ray inside the slab creates a lateral shift.
The lateral shift \(d\) is given by:
\(d = \frac{h \sin(i-r)}{\cos r}\)
Here's how we derive the formula:
\(d = h \sec r \cdot \sin(i-r) = \frac{h \sin(i-r)}{\cos r}\)
Therefore, the correct answer is \(\frac{h \, \sin(i - r)}{\cos r}\).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 