To find the lateral shift \(d\) of a ray refracted through a parallel-sided glass slab of thickness \(h\), we use the geometry of refraction. When a light ray enters a glass slab with an angle of incidence \(i\) and refracts at an angle \(r\), the path of the light ray inside the slab creates a lateral shift.
The lateral shift \(d\) is given by:
\(d = \frac{h \sin(i-r)}{\cos r}\)
Here's how we derive the formula:
\(d = h \sec r \cdot \sin(i-r) = \frac{h \sin(i-r)}{\cos r}\)
Therefore, the correct answer is \(\frac{h \, \sin(i - r)}{\cos r}\).
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: