To find the half-life period of the radioactive material, we will use the basic principle of radioactive decay that relates the remaining quantity of a substance to its initial amount over time, governed by the formula:
\(N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}\)
Where:
According to the problem, the activity drops to \(\frac{1}{16}\) of its initial value in 30 years. We will plug these values into the formula:
\(\frac{1}{16} = \left(\frac{1}{2}\right)^{30/T_{1/2}}\)
Note that \(\frac{1}{16} = \left(\frac{1}{2}\right)^4\). Hence, we set up the equation:
\(4 = \frac{30}{T_{1/2}}\)
Solving for the half-life \(T_{1/2}\) gives:
\(T_{1/2} = \frac{30}{4} = 7.5\text{ years}\)
Thus, the half-life period of the radioactive material is 7.5 years which matches with the given option.
The correct answer is (C) : 7.5 years
\(∵A=\frac{A0}{\frac{t}{2^{T_{1/2}}}}\)
\(⇒2^{\frac{t}{T_{1/2}}}\)
\(=\frac{A_0}{A}=16\)
\(⇒\frac{t}{T_{1/2}}=4\)
\(⇒\frac{30}{T_{1/2}}=4\)
\(⇒T_{1/2}=\frac{30}{4}\)
=7.5 years
A small bob A of mass m is attached to a massless rigid rod of length 1 m pivoted at point P and kept at an angle of 60° with vertical. At 1 m below P, bob B is kept on a smooth surface. If bob B just manages to complete the circular path of radius R after being hit elastically by A, then radius R is_______ m :
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Radioactivity is a phenomenon observed in certain elements where unstable atomic nuclei spontaneously emit energy and subatomic particles. This process is driven by the desire of the nucleus to achieve a more stable state. It's crucial to understand the three main types of radioactive decay:
Alpha Decay: In alpha decay, a nucleus emits an alpha particle, consisting of two protons and two neutrons.
Beta Decay: Beta decay involves the emission of a beta particle, which can be a positron or an electron, from an unstable nucleus.
Gamma Decay: Gamma decay releases gamma rays, electromagnetic radiation, to achieve a more stable nuclear state.
The emission of these particles and energy is a result of nuclear instability. The rate of decay is characterized by the half-life, the time taken for half of the radioactive material to undergo decay. Radioactivity has diverse applications, from medical treatments and industrial processes to power generation in nuclear reactors.