The freezing point depression \( \Delta T_f \) is given by: \[ \Delta T_f = K_f \times m \] where \( K_f \) is the freezing point depression constant, and \( m \) is the molality.
Step 1: First, calculate the molality \( m \): \[ m = \frac{\text{mol of solute}}{\text{kg of solvent}} = \frac{\frac{1}{256}}{\frac{50}{1000}} = \frac{1}{256} \times \frac{1000}{50} = 0.078125 \, \text{mol/kg} \]
Step 2: Using the formula for freezing point depression: \[ \Delta T_f = K_f \times m \] Substitute \( \Delta T_f = 0.40 \, K \) and \( m = 0.078125 \, \text{mol/kg} \): \[ 0.40 = K_f \times 0.078125 \] \[ K_f = \frac{0.40}{0.078125} = 1.86 \, \text{K kg mol}^{-1} \]
Final Conclusion: The freezing point depression constant is 1.86 K kg mol\(^{-1}\), which corresponds to Option (3).

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
