The freezing point depression \( \Delta T_f \) is given by: \[ \Delta T_f = K_f \times m \] where \( K_f \) is the freezing point depression constant, and \( m \) is the molality.
Step 1: First, calculate the molality \( m \): \[ m = \frac{\text{mol of solute}}{\text{kg of solvent}} = \frac{\frac{1}{256}}{\frac{50}{1000}} = \frac{1}{256} \times \frac{1000}{50} = 0.078125 \, \text{mol/kg} \]
Step 2: Using the formula for freezing point depression: \[ \Delta T_f = K_f \times m \] Substitute \( \Delta T_f = 0.40 \, K \) and \( m = 0.078125 \, \text{mol/kg} \): \[ 0.40 = K_f \times 0.078125 \] \[ K_f = \frac{0.40}{0.078125} = 1.86 \, \text{K kg mol}^{-1} \]
Final Conclusion: The freezing point depression constant is 1.86 K kg mol\(^{-1}\), which corresponds to Option (3).
\([A]\) (mol/L) | \(t_{1/2}\) (min) |
---|---|
0.100 | 200 |
0.025 | 100 |