A parallel plate capacitor is filled equally (half) with two dielectrics of dielectric constant $ \epsilon_1 $ and $ \epsilon_2 $, as shown in figures. The distance between the plates is d and area of each plate is A. If capacitance in first configuration and second configuration are $ C_1 $ and $ C_2 $ respectively, then $ \frac{C_1}{C_2} $ is:
Let \( C_0 = \frac{\epsilon_0 A}{d} \)
First Configuration: Area of plate is A.
Then \( C = \frac{\epsilon_2 \epsilon_0 A}{d/2} = \frac{2\epsilon_2 \epsilon_0 A}{d} = 2\epsilon_2 C_0 \) \( C' = \frac{\epsilon_1 \epsilon_0 A}{d/2} = \frac{2\epsilon_1 \epsilon_0 A}{d} = 2\epsilon_1 C_0 \) C and C' are in series.
\( C_1 = \frac{CC'}{C+C'} = \frac{4\epsilon_1 \epsilon_2 C_0^2}{2C_0 (\epsilon_2 + \epsilon_1)} \)
\( C_1 = \frac{2\epsilon_2 \epsilon_1 C_0}{(\epsilon_2 + \epsilon_1)} \)
Second Configuration:
Here \( C = \frac{\epsilon_1 \epsilon_0 A}{2d} = \frac{\epsilon_1 C_0}{2} \)
\( C' = \frac{\epsilon_2 C_0}{2} \) C and C' are in parallel.
\( C_2 = C' + C = (\epsilon_1 + \epsilon_2) \frac{C_0}{2} \)
Thus \( \frac{C_1}{C_2} = \frac{2\epsilon_1 \epsilon_2 C_0}{(\epsilon_2 + \epsilon_1)} \times \frac{2}{(\epsilon_1 + \epsilon_2) C_0} \) \( \frac{C_1}{C_2} = \frac{4\epsilon_1 \epsilon_2}{(\epsilon_2 + \epsilon_1)^2} \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: