A parallel plate capacitor is filled equally (half) with two dielectrics of dielectric constant $ \epsilon_1 $ and $ \epsilon_2 $, as shown in figures. The distance between the plates is d and area of each plate is A. If capacitance in first configuration and second configuration are $ C_1 $ and $ C_2 $ respectively, then $ \frac{C_1}{C_2} $ is: 
Let \( C_0 = \frac{\epsilon_0 A}{d} \)
First Configuration: Area of plate is A.
Then \( C = \frac{\epsilon_2 \epsilon_0 A}{d/2} = \frac{2\epsilon_2 \epsilon_0 A}{d} = 2\epsilon_2 C_0 \) \( C' = \frac{\epsilon_1 \epsilon_0 A}{d/2} = \frac{2\epsilon_1 \epsilon_0 A}{d} = 2\epsilon_1 C_0 \) C and C' are in series.
\( C_1 = \frac{CC'}{C+C'} = \frac{4\epsilon_1 \epsilon_2 C_0^2}{2C_0 (\epsilon_2 + \epsilon_1)} \)
\( C_1 = \frac{2\epsilon_2 \epsilon_1 C_0}{(\epsilon_2 + \epsilon_1)} \)
Second Configuration:
Here \( C = \frac{\epsilon_1 \epsilon_0 A}{2d} = \frac{\epsilon_1 C_0}{2} \)
\( C' = \frac{\epsilon_2 C_0}{2} \) C and C' are in parallel.
\( C_2 = C' + C = (\epsilon_1 + \epsilon_2) \frac{C_0}{2} \)
Thus \( \frac{C_1}{C_2} = \frac{2\epsilon_1 \epsilon_2 C_0}{(\epsilon_2 + \epsilon_1)} \times \frac{2}{(\epsilon_1 + \epsilon_2) C_0} \) \( \frac{C_1}{C_2} = \frac{4\epsilon_1 \epsilon_2}{(\epsilon_2 + \epsilon_1)^2} \)
The problem asks for the ratio of the equivalent capacitances, \( \frac{C_1}{C_2} \), for two different configurations of a parallel plate capacitor filled with two dielectric materials of constants \( \varepsilon_1 \) and \( \varepsilon_2 \).
The capacitance of a parallel plate capacitor filled with a dielectric material is given by the formula:
\[ C = \frac{K \varepsilon_0 A'}{d'} \]where \( K \) is the dielectric constant (here denoted by \( \varepsilon \)), \( \varepsilon_0 \) is the permittivity of free space, \( A' \) is the area of the plates, and \( d' \) is the distance between them.
The two configurations can be modeled as combinations of two separate capacitors:
1. Series Combination: When the dielectrics are stacked such that the distance between the plates is divided, the arrangement is equivalent to two capacitors connected in series. The equivalent capacitance \( C_{eq} \) is given by:
\[ \frac{1}{C_{eq}} = \frac{1}{C_a} + \frac{1}{C_b} \quad \text{or} \quad C_{eq} = \frac{C_a C_b}{C_a + C_b} \]2. Parallel Combination: When the dielectrics are placed side-by-side such that the area of the plates is divided, the arrangement is equivalent to two capacitors in parallel. The equivalent capacitance \( C_{eq} \) is given by:
\[ C_{eq} = C_a + C_b \]Step 1: Calculate the capacitance for the first configuration (\(C_1\)).
In the first configuration, the dielectrics are stacked, dividing the distance \( d \) into two equal halves (\( d/2 \)), while the area \( A \) remains the same for both parts. This corresponds to a series combination of two capacitors.
The capacitance of the part with dielectric \( \varepsilon_1 \) is:
\[ C_{1a} = \frac{\varepsilon_1 \varepsilon_0 A}{d/2} = \frac{2\varepsilon_1 \varepsilon_0 A}{d} \]The capacitance of the part with dielectric \( \varepsilon_2 \) is:
\[ C_{1b} = \frac{\varepsilon_2 \varepsilon_0 A}{d/2} = \frac{2\varepsilon_2 \varepsilon_0 A}{d} \]Since these are in series, the equivalent capacitance \( C_1 \) is:
\[ \frac{1}{C_1} = \frac{1}{C_{1a}} + \frac{1}{C_{1b}} = \frac{d}{2\varepsilon_1 \varepsilon_0 A} + \frac{d}{2\varepsilon_2 \varepsilon_0 A} = \frac{d}{2\varepsilon_0 A} \left( \frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} \right) \] \[ \frac{1}{C_1} = \frac{d}{2\varepsilon_0 A} \left( \frac{\varepsilon_2 + \varepsilon_1}{\varepsilon_1 \varepsilon_2} \right) \]Therefore, the capacitance \( C_1 \) is:
\[ C_1 = \frac{2\varepsilon_0 A}{d} \left( \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \right) \]Step 2: Calculate the capacitance for the second configuration (\(C_2\)).
In the second configuration, the dielectrics are placed side-by-side, dividing the area \( A \) into two equal halves (\( A/2 \)), while the distance \( d \) remains the same. This corresponds to a parallel combination of two capacitors.
The capacitance of the part with dielectric \( \varepsilon_1 \) is:
\[ C_{2a} = \frac{\varepsilon_1 \varepsilon_0 (A/2)}{d} = \frac{\varepsilon_1 \varepsilon_0 A}{2d} \]The capacitance of the part with dielectric \( \varepsilon_2 \) is:
\[ C_{2b} = \frac{\varepsilon_2 \varepsilon_0 (A/2)}{d} = \frac{\varepsilon_2 \varepsilon_0 A}{2d} \]Since these are in parallel, the equivalent capacitance \( C_2 \) is the sum of the individual capacitances:
\[ C_2 = C_{2a} + C_{2b} = \frac{\varepsilon_1 \varepsilon_0 A}{2d} + \frac{\varepsilon_2 \varepsilon_0 A}{2d} = \frac{\varepsilon_0 A}{2d} (\varepsilon_1 + \varepsilon_2) \]Step 3: Calculate the ratio \( \frac{C_1}{C_2} \).
Now, we divide the expression for \( C_1 \) by the expression for \( C_2 \):
\[ \frac{C_1}{C_2} = \frac{\frac{2\varepsilon_0 A}{d} \left( \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \right)}{\frac{\varepsilon_0 A}{2d} (\varepsilon_1 + \varepsilon_2)} \]We can cancel the common term \( \frac{\varepsilon_0 A}{d} \) from the numerator and denominator:
\[ \frac{C_1}{C_2} = \frac{2 \left( \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \right)}{\frac{1}{2} (\varepsilon_1 + \varepsilon_2)} \]Simplifying the expression gives:
\[ \frac{C_1}{C_2} = \frac{4 \varepsilon_1 \varepsilon_2}{(\varepsilon_1 + \varepsilon_2)(\varepsilon_1 + \varepsilon_2)} = \frac{4 \varepsilon_1 \varepsilon_2}{(\varepsilon_1 + \varepsilon_2)^2} \]The required ratio is \( \frac{4\varepsilon_1\varepsilon_2}{(\varepsilon_1+\varepsilon_2)^2} \). This corresponds to option (2).
Match List-I with List-II.
Choose the correct answer from the options given below :}
There are three co-centric conducting spherical shells $A$, $B$ and $C$ of radii $a$, $b$ and $c$ respectively $(c>b>a)$ and they are charged with charges $q_1$, $q_2$ and $q_3$ respectively. The potentials of the spheres $A$, $B$ and $C$ respectively are:
Two resistors $2\,\Omega$ and $3\,\Omega$ are connected in the gaps of a bridge as shown in the figure. The null point is obtained with the contact of jockey at some point on wire $XY$. When an unknown resistor is connected in parallel with $3\,\Omega$ resistor, the null point is shifted by $22.5\,\text{cm}$ towards $Y$. The resistance of unknown resistor is ___ $\Omega$. 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 