Step 1: Apply Snell's Law at the air--block interface.
Let \( r \) be the angle of refraction inside the block.
\[
\sin \theta = 1.25 \sin r = \frac{5}{4} \sin r \implies \sin r = \frac{4}{5} \sin \theta
\]
Step 2: Determine the condition for total internal reflection at the top surface.
The angle of incidence at the top surface is \( i = 90^\circ - r \). For total internal reflection to occur at the block-air interface, \( i \) must be greater than or equal to the critical angle \( \theta_C \), where \( \sin \theta_C = \frac{\mu_1}{\mu_2} = \frac{1}{1.25} = \frac{4}{5} \).
So, we need \( 90^\circ - r \ge \theta_C \), which implies \( \sin(90^\circ - r) \ge \sin \theta_C \), or \( \cos r \ge \frac{4}{5} \).
Step 3: Use a trigonometric identity to express \( \cos r \) in terms of \( \sin r \).
We know that \( \cos r = \sqrt{1 - \sin^2 r} \). Substituting the expression for \( \sin r \) from
Step 1:
\[
\cos r = \sqrt{1 - \left(\frac{4}{5} \sin \theta\right)^2} = \sqrt{1 - \frac{16}{25} \sin^2 \theta}
\]
Step 4: Apply the condition for total internal reflection.
\[
\sqrt{1 - \frac{16}{25} \sin^2 \theta} \ge \frac{4}{5}
\]
Squaring both sides:
\[
1 - \frac{16}{25} \sin^2 \theta \ge \frac{16}{25}
\]
\[
1 - \frac{16}{25} \ge \frac{16}{25} \sin^2 \theta
\]
\[
\frac{9}{25} \ge \frac{16}{25} \sin^2 \theta
\]
\[
9 \ge 16 \sin^2 \theta
\]
\[
\sin^2 \theta \le \frac{9}{16}
\]
\[
|\sin \theta| \le \frac{3}{4}
\]
Since \( \theta \) is the angle of incidence \( (0^\circ \le \theta \le 90^\circ) \), \( \sin \theta \ge 0 \).
\[
\sin \theta \le \frac{3}{4}
\]
The maximum value of \( \theta \) occurs when \( \sin \theta = \frac{3}{4} \), so \( \theta_{max} = \sin^{-1}(3/4) \).