Step 1: Applying the Continuity Equation
The continuity equation states that for an incompressible fluid:
\[
A_1 v_1 = A_2 v_2.
\]
Given:
\[
A_1 = 10 \text{ cm}^2 = 10 \times 10^{-4} \text{ m}^2, \quad A_2 = 5 \text{ cm}^2 = 5 \times 10^{-4} \text{ m}^2.
\]
\[
v_1 = 1 \text{ m/s}.
\]
Using the continuity equation:
\[
10 \times 10^{-4} \times 1 = 5 \times 10^{-4} \times v_2.
\]
Solving for \( v_2 \):
\[
v_2 = \frac{10 \times 10^{-4} \times 1}{5 \times 10^{-4}} = 2 \text{ m/s}.
\]
Step 2: Applying Bernoulli’s Equation
Bernoulli’s equation states:
\[
P_1 + \frac{1}{2} \rho v_1^2 = P_2 + \frac{1}{2} \rho v_2^2.
\]
Given:
\[
P_1 = 2000 \text{ Pa}, \quad v_1 = 1 \text{ m/s}, \quad v_2 = 2 \text{ m/s}.
\]
Assuming water density \( \rho = 1000 \) kg/m\(^3\), we substitute values:
\[
2000 + \frac{1}{2} (1000) (1)^2 = P_2 + \frac{1}{2} (1000) (2)^2.
\]
\[
2000 + 500 = P_2 + 2000.
\]
\[
P_2 = 500 \text{ Pa}.
\]
Thus, the correct answer is:
\[
\boxed{500 \text{ Pa}}.
\]