△=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a+b&p+q&x+y \end{vmatrix}\)
=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a&p&x \end{vmatrix}\)+\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
=△1+△2(say) ....(1)
Now △1= \(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a&p&x \end{vmatrix}\)
Applying R2 → R2 − R3, we have:
△1=\(\begin{vmatrix} b+c & q+r & y+z\\ c & r & z\\ a&p&x \end{vmatrix}\)
Applying R1 → R1 − R2, we have:
△1=\(\begin{vmatrix} b & q & y\\ c & r & z\\ a&p&x \end{vmatrix}\)
Applying R1 ↔R3 and R2 ↔R3, we have:
△1=(-1)2\(\begin{vmatrix}a&p&x\\b&q&y\\c&r&z\end{vmatrix}=\begin{vmatrix}a&p&x\\b&q&y\\c&r&z\end{vmatrix}\) ….....(2)
△2=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
Applying R1 → R1 − R3, we have:
△2=\(\begin{vmatrix} c & r & z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
Applying R2 → R2 − R1, we have:
△2=\(\begin{vmatrix} c & r & z\\ a & p & x\\ b&q&y \end{vmatrix}\)
Applying R1 ↔R2 and R2 ↔R3, we have:
△2=(-1)2\(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\)= \(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\) ...(3)
From (1), (2), and (3), we have:
△=2\(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\) Hence, the given result is proved.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Information Table
| Information | Amount (₹) |
|---|---|
| Preference Share Capital | 8,00,000 |
| Equity Share Capital | 12,00,000 |
| General Reserve | 2,00,000 |
| Balance in Statement of Profit and Loss | 6,00,000 |
| 15% Debentures | 4,00,000 |
| 12% Loan | 4,00,000 |
| Revenue from Operations | 72,00,000 |
Read More: Properties of Determinants