△=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a+b&p+q&x+y \end{vmatrix}\)
=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a&p&x \end{vmatrix}\)+\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
=△1+△2(say) ....(1)
Now △1= \(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ a&p&x \end{vmatrix}\)
Applying R2 → R2 − R3, we have:
△1=\(\begin{vmatrix} b+c & q+r & y+z\\ c & r & z\\ a&p&x \end{vmatrix}\)
Applying R1 → R1 − R2, we have:
△1=\(\begin{vmatrix} b & q & y\\ c & r & z\\ a&p&x \end{vmatrix}\)
Applying R1 ↔R3 and R2 ↔R3, we have:
△1=(-1)2\(\begin{vmatrix}a&p&x\\b&q&y\\c&r&z\end{vmatrix}=\begin{vmatrix}a&p&x\\b&q&y\\c&r&z\end{vmatrix}\) ….....(2)
△2=\(\begin{vmatrix} b+c & q+r & y+z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
Applying R1 → R1 − R3, we have:
△2=\(\begin{vmatrix} c & r & z\\ c+a & r+p & z+x\\ b&q&y \end{vmatrix}\)
Applying R2 → R2 − R1, we have:
△2=\(\begin{vmatrix} c & r & z\\ a & p & x\\ b&q&y \end{vmatrix}\)
Applying R1 ↔R2 and R2 ↔R3, we have:
△2=(-1)2\(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\)= \(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\) ...(3)
From (1), (2), and (3), we have:
△=2\(\begin{vmatrix} a & p& x\\ b & q & y\\ c&r&z \end{vmatrix}\) Hence, the given result is proved.
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
Read More: Properties of Determinants