Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)=0
\(\triangle\)= \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
Applying R1\(\to\) R1+R2,we have
\(\triangle\)= \(\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\-(a-c)&-(b-a)&-(c-b)\end{vmatrix}\)
= \(-\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\(a-c)&(b-a)&(c-b)\end{vmatrix}\)
Here, the two rows R1 and R3 are identical.
\(\triangle\) = 0.
Given :
\(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
So, \(\begin{vmatrix}a&b&c\\b&c&a\\c&a&b\end{vmatrix}-\begin{vmatrix}b&c&a\\c&a&b\\a&b&c\end{vmatrix}\)
Therefore, by finding the determinant of each we get :
= a(cb - a2) - b(b2 - ca) + c(ba - c2)
−b(ac - b2) + c(c2 - ab) - a(cb - a2)
= abc - a3 - b3 + abc + abc - c3 - abc + b3 + c3 - abc - abc + a3
= 3abc - 3abc
= 0
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
Read More: Properties of Determinants