Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)=0
\(\triangle\)= \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
Applying R1\(\to\) R1+R2,we have
\(\triangle\)= \(\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\-(a-c)&-(b-a)&-(c-b)\end{vmatrix}\)
= \(-\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\(a-c)&(b-a)&(c-b)\end{vmatrix}\)
Here, the two rows R1 and R3 are identical.
\(\triangle\) = 0.
Given :
\(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
So, \(\begin{vmatrix}a&b&c\\b&c&a\\c&a&b\end{vmatrix}-\begin{vmatrix}b&c&a\\c&a&b\\a&b&c\end{vmatrix}\)
Therefore, by finding the determinant of each we get :
= a(cb - a2) - b(b2 - ca) + c(ba - c2)
−b(ac - b2) + c(c2 - ab) - a(cb - a2)
= abc - a3 - b3 + abc + abc - c3 - abc + b3 + c3 - abc - abc + a3
= 3abc - 3abc
= 0
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______


Read More: Properties of Determinants