Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)=0
\(\triangle\)= \(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
Applying R1\(\to\) R1+R2,we have
\(\triangle\)= \(\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\-(a-c)&-(b-a)&-(c-b)\end{vmatrix}\)
= \(-\begin{vmatrix}a-c&b-a&c-b\\b-c&c-a&a-b\\(a-c)&(b-a)&(c-b)\end{vmatrix}\)
Here, the two rows R1 and R3 are identical.
\(\triangle\) = 0.
Given :
\(\begin{vmatrix}a-b&b-c&c-a\\b-c&c-a&a-b\\c-a&a-b&b-c\end{vmatrix}\)
So, \(\begin{vmatrix}a&b&c\\b&c&a\\c&a&b\end{vmatrix}-\begin{vmatrix}b&c&a\\c&a&b\\a&b&c\end{vmatrix}\)
Therefore, by finding the determinant of each we get :
= a(cb - a2) - b(b2 - ca) + c(ba - c2)
−b(ac - b2) + c(c2 - ab) - a(cb - a2)
= abc - a3 - b3 + abc + abc - c3 - abc + b3 + c3 - abc - abc + a3
= 3abc - 3abc
= 0
What is the Planning Process?
Read More: Properties of Determinants