Using properties of determinants, prove that:
\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta&\beta^2 &\gamma+\alpha \\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}\)=(\(\beta-\gamma\))( \(\gamma-\alpha\))(\(\alpha-\beta\))(\(\alpha+\beta+\gamma\))
Δ=\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta&\beta^2 &\gamma+\alpha \\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}\)
Applying R2\(\rightarrow\)R2-R1 and R3\(\rightarrow\)R3-R1,we have
=\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta+\alpha&\beta^2-\alpha^2 &\alpha+\beta \\ \gamma-\alpha&\gamma^2-\alpha^2 &\alpha-\gamma \end{vmatrix}\)
Applying R3\(\rightarrow\)R3-R2, we have:
Δ=(β-α)(γ-α)\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ 1&\beta+\alpha &-1 \\ 0&\gamma-\beta &0 \end{vmatrix}\)
Expanding along R3,we have:
Δ=(β-α)(γ-α)[-(γ-β)(-α-β-γ)]
=(β-α)(γ-α)(γ-β)(α+β+γ)
=(β-γ)( γ-α)(α-β)(α+β+γ)
Hence,the given result is proved.
(a) State the following:
(i) Kohlrausch law of independent migration of ions
A solution of glucose (molar mass = 180 g mol\(^{-1}\)) in water has a boiling point of 100.20°C. Calculate the freezing point of the same solution. Molal constants for water \(K_f\) and \(K_b\) are 1.86 K kg mol\(^{-1}\) and 0.512 K kg mol\(^{-1}\) respectively.
Write the reactions involved when D-glucose is treated with the following reagents: (a) HCN (b) Br\(_2\) water
Identify A and B in each of the following reaction sequence:
(a) \[ CH_3CH_2Cl \xrightarrow{NaCN} A \xrightarrow{H_2/Ni} B \]
(b) \[ C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A \xrightarrow{C_6H_5NH_2} B \]
Would you expect benzaldehyde to be more reactive or less reactive in nucleophilic addition reactions than propanal? Justify your answer.