Using properties of determinants, prove that:
\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta&\beta^2 &\gamma+\alpha \\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}\)=(\(\beta-\gamma\))( \(\gamma-\alpha\))(\(\alpha-\beta\))(\(\alpha+\beta+\gamma\))
Δ=\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta&\beta^2 &\gamma+\alpha \\ \gamma&\gamma^2 &\alpha+\beta \end{vmatrix}\)
Applying R2\(\rightarrow\)R2-R1 and R3\(\rightarrow\)R3-R1,we have
=\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ \beta+\alpha&\beta^2-\alpha^2 &\alpha+\beta \\ \gamma-\alpha&\gamma^2-\alpha^2 &\alpha-\gamma \end{vmatrix}\)
Applying R3\(\rightarrow\)R3-R2, we have:
Δ=(β-α)(γ-α)\(\begin{vmatrix} \alpha &\alpha^2 &\beta+\gamma \\ 1&\beta+\alpha &-1 \\ 0&\gamma-\beta &0 \end{vmatrix}\)
Expanding along R3,we have:
Δ=(β-α)(γ-α)[-(γ-β)(-α-β-γ)]
=(β-α)(γ-α)(γ-β)(α+β+γ)
=(β-γ)( γ-α)(α-β)(α+β+γ)
Hence,the given result is proved.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
