Remember Malus’s law: \( I = I_0cos^2θ\), where I0 is the initial intensity and θ is the angle between the polarizer’s axis and the polarization direction of the incident light. For unpolarized light, the initial intensity is halved after the first polarizer
The net intensity is given by:
\[ I_{\text{net}} = I_0 \cdot 2 \cos^2\theta \sin^2\theta \]
Using the trigonometric identity \( \sin^2(2\theta) = 4\cos^2\theta \sin^2\theta \):
\[ I_{\text{net}} = \frac{I_0}{8} \cdot (\sin(2\theta))^2 \]
Substitute \( I_{\text{net}} = 3 \):
\[ 3 = \frac{I_0}{8} \cdot (\sin(2\theta))^2 \]
Simplify for \( \sin(2\theta) \):
\[ (\sin(2\theta))^2 = \frac{3 \cdot 8}{I_0} \]
Assuming \( I_0 \) simplifies, take the square root:
\[ \sin(2\theta) = \frac{\sqrt{3}}{2} \]
From trigonometric solutions, \( 2\theta = 60^\circ \) and \( 120^\circ \).
Divide by 2 to find \( \theta \):
\[ \theta = 30^\circ \, \text{and} \, 60^\circ \]
The values of \( \theta \) are:
\( \theta = 30^\circ \, \text{and} \, 60^\circ. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: