Under which of the following condition(s) does(do) the system of equations $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & a-4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ a \end{bmatrix}$ possess(possess) a unique solution?
Given system of equations:
$$ \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & a-4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ a \end{bmatrix} $$
We need to find the condition under which this system possesses a unique solution.
Step 1: Check the determinant of the coefficient matrix.
For the system to have a unique solution, the determinant of the coefficient matrix must be non-zero. The coefficient matrix is:
$$ A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 1 & 2 & a-4 \end{bmatrix} $$
Step 2: Calculate the determinant of matrix A.
The determinant of a 3x3 matrix is given by:
$$ \text{det}(A) = 1 \cdot \begin{vmatrix} 1 & 2 \\ 2 & a-4 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 2 \\ 1 & a-4 \end{vmatrix} + 4 \cdot \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} $$
Step 3: Compute the minors.
The minors are the determinants of the 2x2 matrices formed by deleting the row and column of the element.
1. $$ \begin{vmatrix} 1 & 2 \\ 2 & a-4 \end{vmatrix} = (1)(a-4) - (2)(2) = a - 4 - 4 = a - 8 $$
2. $$ \begin{vmatrix} 2 & 2 \\ 1 & a-4 \end{vmatrix} = (2)(a-4) - (2)(1) = 2a - 8 - 2 = 2a - 10 $$
3. $$ \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2)(2) - (1)(1) = 4 - 1 = 3 $$
Step 4: Substitute these minors back into the determinant formula.
$$ \text{det}(A) = 1 \cdot (a - 8) - 2 \cdot (2a - 10) + 4 \cdot 3 $$
Simplifying:
$$ \text{det}(A) = a - 8 - 2(2a - 10) + 12 $$
$$ \text{det}(A) = a - 8 - 4a + 20 + 12 $$
$$ \text{det}(A) = -3a + 24 $$
Step 5: Find when the determinant is non-zero.
For a unique solution, we need:
$$ \text{det}(A) \neq 0 $$
So,
$$ -3a + 24 \neq 0 $$
Solving for \(a\):
$$ -3a \neq -24 $$
$$ a \neq 8 $$
Conclusion:
The system has a unique solution for all values of \(a\) except \(a = 8\). Hence, the correct condition is:
$$ a \neq 8 $$
Therefore, the answer is \(a \neq 8\).