We are given the system of equations:
\[ 2x + 3y - z = 5 \] \[ x + \alpha y + 3z = -4 \] \[ 3x - y + \beta z = 7 \]
We can write this system in terms of a family of planes. Using the family of planes, we have:
\[ 2x + 3y - z = k_1 \left( x + \alpha y + 3z \right) + k_2 \left( 3x - y + \beta z \right) \]
Expanding and simplifying:
\[ 2 = k_1 + 3k_2, \quad 3 = k_1 \alpha - k_2, \quad -1 = 3k_1 + \beta k_2, \quad -5 = 4k_1 - 7k_2 \]
Solving this system, we find:
\[ k_2 = \frac{13}{19}, \quad k_1 = -\frac{1}{19}, \quad \alpha = -70, \quad \beta = -\frac{16}{13} \]
Now, calculate \( 13 \alpha \beta \):
\[ 13 \alpha \beta = 13 \times (-70) \times \left( -\frac{16}{13} \right) = 1120 \]
Solving the System of Linear Equations
If (x,y,z) = (α,β,γ) is the unique solution of the system of simultaneous linear equations:
3x - 4y + 2z + 7 = 0, 2x + 3y - z = 10, x - 2y - 3z = 3,
then α = ?
The system of simultaneous linear equations :
\[ \begin{array}{rcl} x - 2y + 3z &=& 4 \\ 2x + 3y + z &=& 6 \\ 3x + y - 2z &=& 7 \end{array} \]
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.