We are given the system of equations:
\[ 2x + 3y - z = 5 \] \[ x + \alpha y + 3z = -4 \] \[ 3x - y + \beta z = 7 \]
We can write this system in terms of a family of planes. Using the family of planes, we have:
\[ 2x + 3y - z = k_1 \left( x + \alpha y + 3z \right) + k_2 \left( 3x - y + \beta z \right) \]
Expanding and simplifying:
\[ 2 = k_1 + 3k_2, \quad 3 = k_1 \alpha - k_2, \quad -1 = 3k_1 + \beta k_2, \quad -5 = 4k_1 - 7k_2 \]
Solving this system, we find:
\[ k_2 = \frac{13}{19}, \quad k_1 = -\frac{1}{19}, \quad \alpha = -70, \quad \beta = -\frac{16}{13} \]
Now, calculate \( 13 \alpha \beta \):
\[ 13 \alpha \beta = 13 \times (-70) \times \left( -\frac{16}{13} \right) = 1120 \]
Given the system of equations has infinitely many solutions:
\[ \begin{aligned} (1) \quad & 2x + 3y - z = 5 \\ (2) \quad & x + \alpha y + 3z = -4 \\ (3) \quad & 3x - y + \beta z = 7 \end{aligned} \]
We need to find \( 13 \alpha \beta \).
For a system of three linear equations in three variables to have infinitely many solutions, the determinant of the coefficient matrix must be zero, and the system must be consistent (all three planes intersect in a line). This means the rank of the coefficient matrix equals the rank of the augmented matrix, and both are less than 3 (here rank = 2). We can use the condition that all 3×3 sub-determinants of the augmented matrix vanish.
Step 1: Write the coefficient matrix \(A\) and augmented matrix \([A|B]\).
\[ A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & \alpha & 3 \\ 3 & -1 & \beta \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ -4 \\ 7 \end{bmatrix} \]
Step 2: For infinitely many solutions, \(\det(A) = 0\).
\[ \det(A) = 2 \begin{vmatrix} \alpha & 3 \\ -1 & \beta \end{vmatrix} - 3 \begin{vmatrix} 1 & 3 \\ 3 & \beta \end{vmatrix} + (-1) \begin{vmatrix} 1 & \alpha \\ 3 & -1 \end{vmatrix} \] \[ = 2(\alpha \beta + 3) - 3(\beta - 9) - 1(-1 - 3\alpha) \] \[ = 2\alpha\beta + 6 - 3\beta + 27 + 1 + 3\alpha \] \[ = 2\alpha\beta + 3\alpha - 3\beta + 34 \]
Set \(\det(A) = 0\):
\[ 2\alpha\beta + 3\alpha - 3\beta + 34 = 0 \quad \text{(Eq. 1)} \]
Step 3: Use the condition that the augmented matrix has rank 2, so any 3×3 submatrix including the constants column has determinant 0.
Consider the determinant formed by columns 1, 2, and constants (replace column 3 of A with B):
\[ D_1 = \begin{vmatrix} 2 & 3 & 5 \\ 1 & \alpha & -4 \\ 3 & -1 & 7 \end{vmatrix} = 0 \]
Expanding:
\[ D_1 = 2 \begin{vmatrix} \alpha & -4 \\ -1 & 7 \end{vmatrix} - 3 \begin{vmatrix} 1 & -4 \\ 3 & 7 \end{vmatrix} + 5 \begin{vmatrix} 1 & \alpha \\ 3 & -1 \end{vmatrix} \] \[ = 2(7\alpha - 4) - 3(7 + 12) + 5(-1 - 3\alpha) \] \[ = 14\alpha - 8 - 3(19) - 5 - 15\alpha \] \[ = (14\alpha - 15\alpha) + (-8 - 57 - 5) \] \[ = -\alpha - 70 \]
So \(-\alpha - 70 = 0 \Rightarrow \alpha = -70\).
Step 4: Similarly, consider columns 1, 3, and constants (replace column 2 of A with B):
\[ D_2 = \begin{vmatrix} 2 & -1 & 5 \\ 1 & 3 & -4 \\ 3 & \beta & 7 \end{vmatrix} = 0 \]
Expanding:
\[ D_2 = 2 \begin{vmatrix} 3 & -4 \\ \beta & 7 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -4 \\ 3 & 7 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ 3 & \beta \end{vmatrix} \] \[ = 2(21 + 4\beta) + 1(7 + 12) + 5(\beta - 9) \] \[ = 42 + 8\beta + 19 + 5\beta - 45 \] \[ = (42 + 19 - 45) + (8\beta + 5\beta) \] \[ = 16 + 13\beta \]
So \(16 + 13\beta = 0 \Rightarrow \beta = -\frac{16}{13}\).
Step 5: Verify Eq. 1 with these values.
\[ 2\alpha\beta + 3\alpha - 3\beta + 34 = 2(-70)\left(-\frac{16}{13}\right) + 3(-70) - 3\left(-\frac{16}{13}\right) + 34 \] \[ = \frac{2240}{13} - 210 + \frac{48}{13} + 34 \] \[ = \frac{2240 + 48}{13} - 176 \] \[ = \frac{2288}{13} - 176 = 176 - 176 = 0 \]
It is satisfied.
Step 6: Compute \(13\alpha\beta\).
\[ 13\alpha\beta = 13 \times (-70) \times \left(-\frac{16}{13}\right) = (-70) \times (-16) = 1120 \]
Therefore, \(13\alpha\beta = \mathbf{1120}\).
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to