Remember the formula for elongation under tensile stress: \(∆L = \frac{FL}{AY}\) consistent units throughout your calculations
The tension in the wire is given by:
\[ T_2 = T_1 + 20 = 20 + 11.4 = 31.4 \, \text{N} \]
The elongation in the steel wire is given by:
\[ \Delta L = \frac{T_2 L}{A Y} \]
\[ \Delta L = \frac{31.4 \cdot 1.6}{\pi (0.2 \times 10^{-2})^2 \cdot 2 \times 10^{11}} \]
Calculate step-by-step:
\[ \Delta L = \frac{50.24}{\pi \cdot 4 \times 10^{-8} \cdot 2 \times 10^{11}} \]
\[ \Delta L = 2 \times 10^{-5} \, \text{m} \]
\[ \Delta L = 20 \times 10^{-6} \, \text{m} = 20 \, \mu\text{m} \]
The elongation in the steel wire is:
\( \Delta L = 20 \, \mu\text{m}. \)
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}