
Remember the formula for elongation under tensile stress: \(∆L = \frac{FL}{AY}\) consistent units throughout your calculations
The tension in the wire is given by:
\[ T_2 = T_1 + 20 = 20 + 11.4 = 31.4 \, \text{N} \]
The elongation in the steel wire is given by:
\[ \Delta L = \frac{T_2 L}{A Y} \]
\[ \Delta L = \frac{31.4 \cdot 1.6}{\pi (0.2 \times 10^{-2})^2 \cdot 2 \times 10^{11}} \]
Calculate step-by-step:
\[ \Delta L = \frac{50.24}{\pi \cdot 4 \times 10^{-8} \cdot 2 \times 10^{11}} \]
\[ \Delta L = 2 \times 10^{-5} \, \text{m} \]
\[ \Delta L = 20 \times 10^{-6} \, \text{m} = 20 \, \mu\text{m} \]
The elongation in the steel wire is:
\( \Delta L = 20 \, \mu\text{m}. \)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 