Calculating Resistance and Resistivity Ratios
1: Resistance Formula
The resistance of a wire is given by:
\[
R = \frac{\rho L}{A}
\]
where:
- \( \rho \) = resistivity,
- \( L \) = length of the wire,
- \( A = \pi r^2 \) = cross-sectional area.
Given:
- Length ratio: \( L_A : L_B = 1:2 \),
- Radius ratio: \( r_A : r_B = 2:1 \),
- Cross-sectional area ratio:
\[
A_A : A_B = \pi (2r)^2 : \pi (r)^2 = 4:1
\]
2: Ratio of Resistances
\[
\frac{R_A}{R_B} = \frac{\rho_A L_A / A_A}{\rho_B L_B / A_B}
\]
\[
= \frac{\rho_A (1) / 4}{\rho_B (2) / 1}
\]
\[
= \frac{\rho_A}{\rho_B} \times \frac{1}{4} \times \frac{1}{2}
\]
\[
= \frac{\rho_A}{\rho_B} \times \frac{1}{8}
\]
Thus,
\[
\frac{R_A}{R_B} = \frac{\rho_A}{8 \rho_B}
\]
From the I-V graph, the slope represents resistance \( R \). Using the given graph values,
\[
\frac{R_A}{R_B} = 2
\]
Thus,
\[
2 = \frac{\rho_A}{8 \rho_B}
\]
3: Ratio of Resistivities
Rearranging:
\[
\rho_A = 16 \rho_B
\]
\[
\frac{\rho_A}{\rho_B} = 16
\]
4: Conclusion
- Ratio of resistances: \( \frac{R_A}{R_B} = 2 \)
- Ratio of resistivities: \( \frac{\rho_A}{\rho_B} = 16 \)