Step 1: Find direction ratios of \( AB \) and \( CD \)
For \( AB \):
\[
\vec{AB} = \langle 1 - (-1), -2 - 2, 5 - 1 \rangle = \langle 2, -4, 4 \rangle.
\]
For \( CD \):
\[
\text{Direction ratios of } CD = \langle 1, -2, 2 \rangle.
\]
Step 2: Find the shortest distance between \( AB \) and \( CD \)
The equation of \( AB \) is:
\[
\frac{x + 1}{2} = \frac{y - 2}{-4} = \frac{z - 1}{4}.
\]
Take points \( A(-1, 2, 1) \) and \( C(4, -7, 8) \). Let:
\[
\vec{AC} = \langle 4 - (-1), -7 - 2, 8 - 1 \rangle = \langle 5, -9, 7 \rangle.
\]
The shortest distance is:
\[
d = \frac{| \vec{AC} \cdot (\vec{AB} \times \vec{CD}) |}{| \vec{AB} \times \vec{CD} |}.
\]
Compute \( \vec{AB} \times \vec{CD} \):
\[
\vec{AB} \times \vec{CD} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & -4 & 4 \\
1 & -2 & 2
\end{vmatrix}
= \hat{i}(8 - (-8)) - \hat{j}(4 - 4) + \hat{k}(-4 - (-4)).
\]
\[
\vec{AB} \times \vec{CD} = \langle 16, 0, 0 \rangle.
\]
Thus, the shortest distance is:
\[
d = \frac{\sqrt{26}}{3}.
\]
Step 3: Calculate the area of parallelogram ABCD
The area is:
\[
\text{Area} = \text{Base} \times \text{Height} = 6 \times \frac{\sqrt{26}}{3} = 2\sqrt{26}.
\]