The refraction at a spherical surface is governed by the equation: \[ \frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}, \] where:
\( \mu_1 = 1.0 \) (refractive index of the rarer medium),
\( \mu_2 = 1.5 \) (refractive index of the denser medium),
\( u = -15 \, \text{cm} \) (object distance, negative as it is measured opposite to the direction of incident light),
\( R = +30 \, \text{cm} \) (radius of curvature, positive as the center of curvature lies in the denser medium),
\( v \) is the image distance to be determined.
Substitute the values into the equation: \[ \frac{1.5}{v} - \frac{1.0}{-15} = \frac{1.5 - 1.0}{30}. \]
Simplify: \[ \frac{1.5}{v} + \frac{1}{15} = \frac{0.5}{30}. \] \[ \frac{1.5}{v} = \frac{1}{60} - \frac{1}{15}. \]
Simplify further: \[ \frac{1.5}{v} = \frac{1 - 4}{60} = \frac{-3}{60}. \] \[ \frac{1.5}{v} = -\frac{1}{20}. \] Solve for \( v \): \[ v = -\frac{1.5 \cdot 20}{1} = -30 \, \text{cm}. \] The negative sign indicates that the image is formed on the opposite side of the refracting surface, i.e., in the denser medium.
Final Answer: The distance of the image from the pole of the surface is: \[ \boxed{30 \, \text{cm}}. \]

Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to: