Step 1: The problem asks for the probability that two randomly chosen smallest squares on a chessboard share a side. A standard chessboard consists of \(8 \times 8\) squares, which means there are 64 total small squares.
Step 2: The number of possible pairs of squares is given by \(\binom{64}{2}\).
Step 3: The number of favorable outcomes where two squares have a side in common is based on the number of adjacent squares. Each square has up to 4 adjacent squares (except for the edge squares), and the total number of such adjacent square pairs is fewer than 64, as we are restricted to squares that share a side.
Step 4: By counting the adjacent pairs (both horizontally and vertically) and dividing by the total number of pairs, we obtain the probability \(\frac{1}{18}\).
If the probability distribution is given by:
| X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| P(x) | 0 | k | 2k | 2k | 3k | k² | 2k² | 7k² + k |
Then find: \( P(3 < x \leq 6) \)
If \(S=\{1,2,....,50\}\), two numbers \(\alpha\) and \(\beta\) are selected at random find the probability that product is divisible by 3 :

Which of the following statement(s) is/are correct about the given compound?
