To find the total current drawn from the battery, when two resistors are connected in parallel, we first need to calculate the equivalent resistance of the parallel combination of resistors.
For resistors in parallel, the equivalent resistance \( R_{\text{eq}} \) is given by the formula:
\( \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} \)
Substituting the given resistor values, \( R_1 = 4 \Omega \) and \( R_2 = 6 \Omega \):
\( \frac{1}{R_{\text{eq}}} = \frac{1}{4} + \frac{1}{6} \)
To add these fractions, we find a common denominator, which is 12:
\( \frac{1}{4} = \frac{3}{12}, \quad \frac{1}{6} = \frac{2}{12} \)
\( \frac{1}{R_{\text{eq}}} = \frac{3}{12} + \frac{2}{12} = \frac{5}{12} \)
Thus:
\( R_{\text{eq}} = \frac{12}{5} \Omega = 2.4 \Omega \)
Now, using Ohm's law, the total current \( I \) drawn from the battery is given by:
\( I = \frac{V}{R_{\text{eq}}} \)
where \( V = 12 \text{ V} \):
\( I = \frac{12 \text{ V}}{2.4 \Omega} = 5 \text{ A} \)
Therefore, the total current drawn from the battery is 5 A.


A battery of emf \( E \) and internal resistance \( r \) is connected to a rheostat. When a current of 2A is drawn from the battery, the potential difference across the rheostat is 5V. The potential difference becomes 4V when a current of 4A is drawn from the battery. Calculate the value of \( E \) and \( r \).