The equation \( \mathbf{E} = \rho \mathbf{J} \) is known as the electrical conductivity equation. Here:
From this equation, we can express the electric field in terms of current density:
\[ \mathbf{E} = \rho \mathbf{J} \]
Now, consider **Ohm's law**, which states that the current density \( \mathbf{J} \) is proportional to the electric field \( \mathbf{E} \) and the material's conductivity \( \sigma \) (the inverse of resistivity). So, we can write:
\[ \mathbf{J} = \sigma \mathbf{E} \]
Since \( \sigma = \frac{1}{\rho} \), we can substitute this into the above equation:
\[ \mathbf{J} = \frac{1}{\rho} \mathbf{E} \]
Rearranging the equation, we get:
\[ \mathbf{E} = \rho \mathbf{J} \]
This is exactly the form of the equation we started with, so we have derived Ohm's law from the equation \( \mathbf{E} = \rho \mathbf{J} \).
Ohm's law assumes that the material has a constant resistivity \( \rho \) and that the current is proportional to the applied voltage (i.e., linear response). However, there are conditions under which Ohm's law does not hold:
Thus, Ohm’s law is not valid in situations where the material’s resistivity is not constant or when extreme conditions like high electric fields or temperatures cause a non-linear relationship between voltage and current.
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).