Let the resistances be \( R_1 \) and \( R_2 \).
1. The formula for two resistances in series:
\[
R_{\text{series}} = R_1 + R_2
\]
We are given:
\[
R_{\text{series}} = 50 \, \text{ohms} \quad \Rightarrow \quad R_1 + R_2 = 50 \, \text{(Equation 1)}
\]
2. The formula for two resistances in parallel:
\[
\frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2}
\]
We are given:
\[
R_{\text{parallel}} = 8 \, \text{ohms} \quad \Rightarrow \quad \frac{1}{8} = \frac{1}{R_1} + \frac{1}{R_2}
\]
Multiplying both sides by \( R_1 R_2 \):
\[
R_1 R_2 = 8(R_1 + R_2) \quad \Rightarrow \quad R_1 R_2 = 8 \times 50 = 400 \, \text{(Equation 2)}
\]
Now, solving these two equations:
- Equation 1: \( R_1 + R_2 = 50 \)
- Equation 2: \( R_1 R_2 = 400 \)
We can solve this system by using the quadratic equation:
\[
x^2 - (R_1 + R_2)x + R_1 R_2 = 0
\]
\[
x^2 - 50x + 400 = 0
\]
Solving this quadratic equation:
\[
x = \frac{50 \pm \sqrt{50^2 - 4 \times 1 \times 400}}{2} = \frac{50 \pm \sqrt{2500 - 1600}}{2} = \frac{50 \pm \sqrt{900}}{2} = \frac{50 \pm 30}{2}
\]
Thus, \( x = 40 \) or \( x = 10 \). Therefore, the resistances are 10 ohms and 40 ohms. Thus, the correct answer is \( 10 \, \text{ohms} \) and \( 40 \, \text{ohms} \).
% Correct Answer
Correct Answer:} (B) 10 ohm and 40 ohm