In parallel combination,
\( \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \)
Given \( R_1 = 10 \) and \( R_2 = 15 \),
\( \frac{1}{R_{eq}} = \frac{1}{10} + \frac{1}{15} = \frac{5}{30} = \frac{1}{6} \)
Therefore, \( R_{eq} = 6 \).
Now, for error calculation,
\( \frac{dR_{eq}}{R_{eq}^2} = \frac{dR_1}{R_1^2} + \frac{dR_2}{R_2^2} \)
Given \( dR_1 = 0.5 \) and \( dR_2 = 0.5 \),
\( \frac{dR_{eq}}{36} = \frac{0.5}{100} + \frac{0.5}{225} \)
\( dR_{eq} = 36 \times 0.5 \times \left(\frac{1}{100} + \frac{1}{225}\right) \)
\( dR_{eq} = 36 \times 0.5 \times \left(\frac{9 + 4}{900}\right) = 18 \times \frac{13}{900} = \frac{26}{100} = 0.26 \)
Now, the percentage error is,
\( \frac{dR_{eq}}{R_{eq}} \times 100 = \frac{0.26}{6} \times 100 = \frac{26}{6} = 4.33 \)
The percentage error is approximately 4.33%.
The formula for equivalent resistance (\( R_{eq} \)) when two resistors are connected in parallel is:
\( \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \)
Substituting the given values of \( R_1 = 10 \ \Omega \) and \( R_2 = 15 \ \Omega \):
\( \frac{1}{R_{eq}} = \frac{1}{10} + \frac{1}{15} = \frac{3 + 2}{30} = \frac{5}{30} = \frac{1}{6} \)
Therefore, \( R_{eq} = 6 \ \Omega \).
The formula for error propagation in parallel combination is:
\( \frac{dR_{eq}}{R_{eq}^2} = \frac{dR_1}{R_1^2} + \frac{dR_2}{R_2^2} \)
Given \( dR_1 = 0.5 \ \Omega \) and \( dR_2 = 0.5 \ \Omega \), we can substitute the values:
\( \frac{dR_{eq}}{6^2} = \frac{0.5}{10^2} + \frac{0.5}{15^2} \)
\( \frac{dR_{eq}}{36} = \frac{0.5}{100} + \frac{0.5}{225} \)
\( \frac{dR_{eq}}{36} = 0.5 \left( \frac{1}{100} + \frac{1}{225} \right) = 0.5 \left( \frac{9 + 4}{900} \right) = 0.5 \times \frac{13}{900} = \frac{13}{1800} \)
\( dR_{eq} = 36 \times \frac{13}{1800} = \frac{2 \times 13}{100} = \frac{26}{100} = 0.26 \ \Omega \)
The percentage error is calculated as:
\( \text{Percentage Error} = \frac{dR_{eq}}{R_{eq}} \times 100 \)
Substituting the calculated values:
\( \text{Percentage Error} = \frac{0.26}{6} \times 100 = \frac{26}{6} = 4.33\% \)
The percentage error in the measurement of equivalent resistance is 4.33% (Option 2).

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
