In parallel combination,
\( \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \)
Given \( R_1 = 10 \) and \( R_2 = 15 \),
\( \frac{1}{R_{eq}} = \frac{1}{10} + \frac{1}{15} = \frac{5}{30} = \frac{1}{6} \)
Therefore, \( R_{eq} = 6 \).
Now, for error calculation,
\( \frac{dR_{eq}}{R_{eq}^2} = \frac{dR_1}{R_1^2} + \frac{dR_2}{R_2^2} \)
Given \( dR_1 = 0.5 \) and \( dR_2 = 0.5 \),
\( \frac{dR_{eq}}{36} = \frac{0.5}{100} + \frac{0.5}{225} \)
\( dR_{eq} = 36 \times 0.5 \times \left(\frac{1}{100} + \frac{1}{225}\right) \)
\( dR_{eq} = 36 \times 0.5 \times \left(\frac{9 + 4}{900}\right) = 18 \times \frac{13}{900} = \frac{26}{100} = 0.26 \)
Now, the percentage error is,
\( \frac{dR_{eq}}{R_{eq}} \times 100 = \frac{0.26}{6} \times 100 = \frac{26}{6} = 4.33 \)
The percentage error is approximately 4.33%.
The formula for equivalent resistance (\( R_{eq} \)) when two resistors are connected in parallel is:
\( \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} \)
Substituting the given values of \( R_1 = 10 \ \Omega \) and \( R_2 = 15 \ \Omega \):
\( \frac{1}{R_{eq}} = \frac{1}{10} + \frac{1}{15} = \frac{3 + 2}{30} = \frac{5}{30} = \frac{1}{6} \)
Therefore, \( R_{eq} = 6 \ \Omega \).
The formula for error propagation in parallel combination is:
\( \frac{dR_{eq}}{R_{eq}^2} = \frac{dR_1}{R_1^2} + \frac{dR_2}{R_2^2} \)
Given \( dR_1 = 0.5 \ \Omega \) and \( dR_2 = 0.5 \ \Omega \), we can substitute the values:
\( \frac{dR_{eq}}{6^2} = \frac{0.5}{10^2} + \frac{0.5}{15^2} \)
\( \frac{dR_{eq}}{36} = \frac{0.5}{100} + \frac{0.5}{225} \)
\( \frac{dR_{eq}}{36} = 0.5 \left( \frac{1}{100} + \frac{1}{225} \right) = 0.5 \left( \frac{9 + 4}{900} \right) = 0.5 \times \frac{13}{900} = \frac{13}{1800} \)
\( dR_{eq} = 36 \times \frac{13}{1800} = \frac{2 \times 13}{100} = \frac{26}{100} = 0.26 \ \Omega \)
The percentage error is calculated as:
\( \text{Percentage Error} = \frac{dR_{eq}}{R_{eq}} \times 100 \)
Substituting the calculated values:
\( \text{Percentage Error} = \frac{0.26}{6} \times 100 = \frac{26}{6} = 4.33\% \)
The percentage error in the measurement of equivalent resistance is 4.33% (Option 2).
If $ \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p $, then $ 96 \log_e p $ is equal to _______
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: