Using Coulomb’s law:
\[
F = k \frac{q_1 q_2}{r^2}
\]
where:
- \( k = 9 \times 10^9 \, \text{Nm}^2\text{C}^{-2} \),
- \( r = 4 \) m,
- \( q_1 + q_2 = 36 \mu C \),
- \( F = 0.18 \) N.
Substituting values:
\[
0.18 = 9 \times 10^9 \times \frac{q_1 q_2}{4^2}
\]
\[
q_1 q_2 = \frac{0.18 \times 16}{9 \times 10^9} \times 10^{-12}
\]
\[
q_1 q_2 = 3.2 \times 10^{-12} \text{C}^2
\]
Solving for \( q_1, q_2 \):
\[
q_1, q_2 = \frac{36 \pm \sqrt{36^2 - 4 \times 3.2}}{2}
\]
\[
q_1 = 20 \mu C, \quad q_2 = 16 \mu C
\]
Thus, the larger charge is \( 20 \mu C \).