Two point charges +q and −q are held at (a, 0) and (−a, 0) in x-y plane. Obtain an expression for the net electric field due to the charges at a point (0, y). Hence, find electric field at a far off point (y ≫ a).
Charges are placed at:
Distance from each charge to point \( P(0, y) \) is:
\[ r_{+} = r_{-} = \sqrt{a^2 + y^2} \]
The magnitude of electric field due to a point charge is given by:
\[ E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \]
Let \( \vec{E}_+ \) and \( \vec{E}_- \) be the fields due to \( +q \) and \( -q \) respectively. They make an angle \( \theta \) with the vertical, where:
\[ \theta = \tan^{-1}\left(\frac{a}{y}\right) \]
Because of symmetry:
Vertical component of the field due to one charge:
\[ E_{y\pm} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q y}{(a^2 + y^2)^{3/2}} \]
Net vertical electric field at point \( P \):
\[ E_{\text{net}} = 2 E_{y\pm} = \frac{1}{2\pi\varepsilon_0} \cdot \frac{q y}{(a^2 + y^2)^{3/2}} \]
If \( y \gg a \), then \( a^2 + y^2 \approx y^2 \). So,
\[ E_{\text{far}} = \frac{1}{2\pi\varepsilon_0} \cdot \frac{q}{y^2} \]
At large distances along the y-axis, the electric field due to the dipole varies as \( \frac{1}{y^2} \).
A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(i)} Express the distance \( y \) between the wall and foot of the ladder in terms of \( h \) and height \( x \) on the wall at a certain instant. Also, write an expression in terms of \( h \) and \( x \) for the area \( A \) of the right triangle, as seen from the side by an observer.
निम्नलिखित गद्यांश की सप्रसंग व्याख्या कीजिए :
‘‘पुर्ज़े खोलकर फिर ठीक करना उतना कठिन काम नहीं है, लोग सीखते भी हैं, सिखाते भी हैं, अनाड़ी के हाथ में चाहे घड़ी मत दो पर जो घड़ीसाज़ी का इम्तहान पास कर आया है उसे तो देखने दो । साथ ही यह भी समझा दो कि आपको स्वयं घड़ी देखना, साफ़ करना और सुधारना आता है कि नहीं । हमें तो धोखा होता है कि परदादा की घड़ी जेब में डाले फिरते हो, वह बंद हो गई है, तुम्हें न चाबी देना आता है न पुर्ज़े सुधारना तो भी दूसरों को हाथ नहीं लगाने देते इत्यादि ।’’