
The magnetic field at point \( A \), \( B_A \), is given by:
\[ B_A = \frac{\mu_0 I}{2 \pi r} + \frac{\mu_0 (2I)}{2 \pi (3r)} = \frac{5 \mu_0 I}{6 \pi r}. \]
The magnetic field at point \( C \), \( B_C \), is given by:
\[ B_C = \frac{\mu_0 (2I)}{2 \pi r} + \frac{\mu_0 I}{2 \pi (3r)} = \frac{7 \mu_0 I}{6 \pi r}. \]
The ratio of magnetic fields \( B_A \) to \( B_C \) is:
\[ \frac{B_A}{B_C} = \frac{5}{7}. \]
Thus, we find:
\[ x = 5. \]



In the above diagram, the standard electrode potentials are given in volts (over the arrow). The value of \( E^\circ_{\text{FeO}_4^{2-}/\text{Fe}^{2+}} \) is:
The most stable carbocation from the following is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).