The magnetic field at point \( A \), \( B_A \), is given by:
\[ B_A = \frac{\mu_0 I}{2 \pi r} + \frac{\mu_0 (2I)}{2 \pi (3r)} = \frac{5 \mu_0 I}{6 \pi r}. \]
The magnetic field at point \( C \), \( B_C \), is given by:
\[ B_C = \frac{\mu_0 (2I)}{2 \pi r} + \frac{\mu_0 I}{2 \pi (3r)} = \frac{7 \mu_0 I}{6 \pi r}. \]
The ratio of magnetic fields \( B_A \) to \( B_C \) is:
\[ \frac{B_A}{B_C} = \frac{5}{7}. \]
Thus, we find:
\[ x = 5. \]
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $