The magnetic field at point \( A \), \( B_A \), is given by:
\[ B_A = \frac{\mu_0 I}{2 \pi r} + \frac{\mu_0 (2I)}{2 \pi (3r)} = \frac{5 \mu_0 I}{6 \pi r}. \]
The magnetic field at point \( C \), \( B_C \), is given by:
\[ B_C = \frac{\mu_0 (2I)}{2 \pi r} + \frac{\mu_0 I}{2 \pi (3r)} = \frac{7 \mu_0 I}{6 \pi r}. \]
The ratio of magnetic fields \( B_A \) to \( B_C \) is:
\[ \frac{B_A}{B_C} = \frac{5}{7}. \]
Thus, we find:
\[ x = 5. \]
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: