Number of turns: \( N = 100 \)
Radius of coils: \( r = \pi \, \text{cm} = \pi \times 10^{-2} \, \text{m} \)
Current in coil \( P \): \( I_1 = 1 \, \text{A} \)
Current in coil \( Q \): \( I_2 = 2 \, \text{A} \)
The magnetic field at the center of a circular coil is given by:
\[ B = \frac{\mu_0 NI}{2r} \] where \( \mu_0 = 4\pi \times 10^{-7} \, \text{TmA}^{-1} \).
Calculating the magnetic fields:
\[ B_P = \frac{\mu_0 NI_1}{2r} = \frac{4\pi \times 10^{-7} \times 100 \times 1}{2 \times \pi \times 10^{-2}} = 2 \times 10^{-3} \, \text{T} \] \[ B_Q = \frac{\mu_0 NI_2}{2r} = \frac{4\pi \times 10^{-7} \times 100 \times 2}{2 \times \pi \times 10^{-2}} = 4 \times 10^{-3} \, \text{T} \]
Since the magnetic fields are perpendicular, the resultant magnetic field \( B_{\text{net}} \) is given by:
\[ B_{\text{net}} = \sqrt{B_P^2 + B_Q^2} \] \[ B_{\text{net}} = \sqrt{(2 \times 10^{-3})^2 + (4 \times 10^{-3})^2} \, \text{T} \] \[ B_{\text{net}} = \sqrt{4 \times 10^{-6} + 16 \times 10^{-6}} \, \text{T} \] \[ B_{\text{net}} = \sqrt{20 \times 10^{-6}} \, \text{T} \] \[ B_{\text{net}} = \sqrt{20} \times 10^{-3} \, \text{T} = \sqrt{20} \, \text{mT} \]
Thus, \( x = 20 \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: