The escape velocity \(v_e\) is given by the formula:
\[
v_e = \sqrt{\frac{2GM}{R}}
\]
where \(G\) is the gravitational constant, \(M\) is the mass of the planet, and \(R\) is the radius of the planet.
For Earth:
\[
v_{e, \text{Earth}} = \sqrt{\frac{2GM_{\text{Earth}}}{R_{\text{Earth}}}}
\]
For Planet X:
\[
v_{e, \text{X}} = \sqrt{\frac{2GM_{\text{X}}}{R_{\text{X}}}}
\]
Given that the mass of Earth is 9 times the mass of Planet X and the radius of Earth is 4 times the radius of Planet X, we can write the ratio of the escape velocities as:
\[
\frac{v_{e, \text{X}}}{v_{e, \text{Earth}}} = \sqrt{\frac{M_{\text{X}}}{M_{\text{Earth}}} \times \frac{R_{\text{Earth}}}{R_{\text{X}}}}
\]
Substituting the given values:
\[
\frac{v_{e, \text{X}}}{v_{e, \text{Earth}}} = \sqrt{\frac{1}{9} \times \frac{4}{1}} = \sqrt{\frac{4}{9}} = \frac{2}{3}
\]
Thus, the required ratio is \( \frac{2}{3} \), which corresponds to option (A).