Step 1: The problem asks for the probability that \(r \leq s \leq k\), where \(r\) and \(s\) are chosen from the set \(\{1, 2, \dots, n\}\).
Step 2: First, count the total number of ways to choose two integers from \(\{1, 2, \dots, n\}\). This is \(\binom{n}{2}\).
Step 3: Now, count the favorable outcomes where \(r \leq s \leq k\). The number of such pairs is \(k - 1\) because the integers \(r\) and \(s\) must be less than or equal to \(k\) and ordered accordingly.
Step 4: The probability is the ratio of favorable outcomes to total outcomes, which simplifies to \(\frac{k-1}{n-1}\).
Four students of class XII are given a problem to solve independently. Their respective chances of solving the problem are: \[ \frac{1}{2},\quad \frac{1}{3},\quad \frac{2}{3},\quad \frac{1}{5} \] Find the probability that at most one of them will solve the problem.
Two persons are competing for a position on the Managing Committee of an organisation. The probabilities that the first and the second person will be appointed are 0.5 and 0.6, respectively. Also, if the first person gets appointed, then the probability of introducing a waste treatment plant is 0.7, and the corresponding probability is 0.4 if the second person gets appointed.
Based on the above information, answer the following