Step 1: The problem asks for the probability that \(r \leq s \leq k\), where \(r\) and \(s\) are chosen from the set \(\{1, 2, \dots, n\}\).
Step 2: First, count the total number of ways to choose two integers from \(\{1, 2, \dots, n\}\). This is \(\binom{n}{2}\).
Step 3: Now, count the favorable outcomes where \(r \leq s \leq k\). The number of such pairs is \(k - 1\) because the integers \(r\) and \(s\) must be less than or equal to \(k\) and ordered accordingly.
Step 4: The probability is the ratio of favorable outcomes to total outcomes, which simplifies to \(\frac{k-1}{n-1}\).
A board has 16 squares as shown in the figure. Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
Three distinct numbers are selected randomly from the set \( \{1, 2, 3, \dots, 40\} \). If the probability, that the selected numbers are in an increasing G.P. is \( \frac{m}{n} \), where \( \gcd(m, n) = 1 \), then \( m + n \) is equal to:

A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: