The cells are connected in series, so:
The current \( I \) in the circuit is given by:
\[ I = \frac{2\varepsilon}{R + 2r}. \]
The voltmeter measures the potential difference across the external resistance \( R \):
\[ V_R = I \cdot R. \]
Rearranging to find \( I \):
\[ I = \frac{V_R}{R}. \]
Substitute \( V_R = 1.5 \, \text{V} \) and \( R = 10 \, \Omega \):
\[ I = \frac{1.5}{10} = 0.15 \, \text{A}. \]
Using the formula for current in the circuit:
\[ I = \frac{2\varepsilon}{R + 2r}. \]
Substitute \( I = 0.15 \, \text{A} \), \( 2\varepsilon = 3 \, \text{V} \), and \( R = 10 \, \Omega \):
\[ 0.15 = \frac{3}{10 + 2r}. \]
Rearranging for \( 10 + 2r \):
\[ 10 + 2r = \frac{3}{0.15} = 20. \]
Simplify for \( 2r \):
\[ 2r = 20 - 10 = 10. \]
Finally, solve for \( r \):
\[ r = \frac{10}{2} = 5 \, \Omega. \]
The internal resistance of each cell is \( 5 \, \Omega \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: