Two co-axial conducting cylinders of same length $ \ell $ with radii $ \sqrt{2}R $ and $ 2R $ are kept, as shown in Fig. 1. The charge on the inner cylinder is $ Q $ and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant $ \kappa = 5 $. Consider an imaginary plane of the same length $ \ell $ at a distance $ R $ from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. Ignoring edge effects, the flux of the electric field through the plane is $ (\varepsilon_0 \text{ is the permittivity of free space}) $:
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is