Two infinite identical charged sheets and a charged spherical body of charge density ' $\rho$ ' are arranged as shown in figure. Then the correct relation between the electrical fields at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D points is:
$\left|\vec{E}_{A}\right|=\left|\vec{E}_{B}\right| ; \vec{E}_{C}>\vec{E}_{D}$
1. Electric field at points A and B: - $\vec{E}_{A}>\vec{E}_{B}$
2. Electric field at points C and D: - $\vec{E}_{C} \neq \vec{E}_{D}$
Therefore, the correct answer is (3) $\vec{E}_{C} \neq \vec{E}_{D} ; \vec{E}_{A}>\vec{E}_{B}$.
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: