To find the area of the rectangular surface, we start with the formula for electric flux: \( \Phi = \vec{E} \cdot \vec{A} \). Here, the electric field \( \vec{E} \) is given by: \( \vec{E} = (2\hat{i} + 4\hat{j} + 6\hat{k}) \times 10^3 \, N/C \). The flux \( \Phi \) is given as \( 6.0 \, Nm^2C^{-1} \).
The surface is parallel to the x-z plane. For a surface parallel to the x-z plane, the area vector \( \vec{A} \) is perpendicular to the plane in the y-direction and can be expressed as \( \vec{A} = A\hat{j} \).
Since only the j-component of \( \vec{E} \) contributes to the flux, we have: \( \Phi = E_y \cdot A \), where \( E_y = 4 \times 10^3 \, N/C \).
Substituting the values, \( 6.0 = 4 \times 10^3 \times A \).
Solving for \( A \): \( A = \frac{6.0}{4 \times 10^3} = 1.5 \times 10^{-3} \, m^2 \).
Convert the area to \( cm^2 \): \( A = 1.5 \times 10^{-3} \, m^2 \times (10^4 \, cm^2/m^2) = 15 \, cm^2 \).
The area of the surface is 15 \( cm^2 \), which falls within the given range of 15,15, thus confirming the solution.



Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: