For cells connected in parallel, the equivalent emf \( \varepsilon_{\text{eq}} \) is given by the formula:
\[
\varepsilon_{\text{eq}} = \frac{r_1 \varepsilon_2 + r_2 \varepsilon_1}{r_1 + r_2},
\]
where \( \varepsilon_1 \) and \( \varepsilon_2 \) are the emf values of the two cells, and \( r_1 \) and \( r_2 \) are their respective internal resistances.
Substituting the given values:
\[
\varepsilon_{\text{eq}} = \frac{0.1 \times 6.0 + 0.4 \times 2.0}{0.1 + 0.4} = \frac{0.6 + 0.8}{0.5} = 2.8 \, \text{V}.
\]
Thus, the correct answer is:
\[
\boxed{(B)} \quad 2.8 \, \text{V}.
\]