Total number of molecules/species from the following which will be paramagnetic is ………. \[ O_2, O_2^+, O_2^-, NO, NO_2, CO, K_2[NiCl_4], [Co(NH_3)_6]Cl_3, K_2[Ni(CN)_4] \]
A species is paramagnetic if it has unpaired electrons:
- \( O_2 \) (paramagnetic) ✅
- \( O_2^+ \) (paramagnetic) ✅
- \( O_2^- \) (paramagnetic) ✅
- \( NO \) (paramagnetic) ✅
- \( NO_2 \) (paramagnetic) ✅
- \( CO \) (diamagnetic) ❌
- \( K_2[NiCl_4] \) (paramagnetic) ✅
- \( [Co(NH_3)_6]Cl_3 \) (diamagnetic) ❌
- \( K_2[Ni(CN)_4] \) (diamagnetic) ❌
Total paramagnetic species = 5.
The descending order of basicity of following amines is :
Choose the correct answer from the options given below :
Which of the following amine(s) show(s) positive carbamylamine test?
The correct order of basicity for the following molecules is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: