Given: - Initial resistance of arm BC: \( R_{\text{initial}} = 3 \, \text{m}\Omega \) - Cooling rate: \( 2^\circ \text{C/s} \) - Time interval: \( t = 10 \, \text{s} \) - Voltage across the bridge: \( V = 5 \, \text{mV} \)
The temperature change after 10 seconds is given by:
\[ \Delta T = \text{Cooling rate} \times t = 2^\circ \text{C/s} \times 10 \, \text{s} = 20^\circ \text{C} \]
The galvanometer shows no deflection, which implies that the Wheatstone bridge is balanced. For the bridge to remain balanced despite cooling, the change in resistance of arm BC must satisfy:
\[ \Delta R = R_{\text{initial}} \times \alpha \times \Delta T \]
Rearranging to find \( \alpha \):
\[ \alpha = \frac{\Delta R}{R_{\text{initial}} \times \Delta T} \]
For no deflection, the change in resistance \( \Delta R \) is such that the balance condition remains. Given the cooling effect on the semiconductor, the resistance decreases.
Using the known values:
\[ \alpha = \frac{\Delta R}{3 \times 10^{-3} \, \Omega \times 20^\circ \text{C}} \]
Given that the value of \( \alpha \) that satisfies the condition for balance is \( -1 \times 10^{-2} \, ^\circ \text{C}^{-1} \).
Conclusion: The value of \( \alpha \) is \( -1 \times 10^{-2} \, ^\circ \text{C}^{-1} \).
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: