Given: - Initial resistance of arm BC: \( R_{\text{initial}} = 3 \, \text{m}\Omega \) - Cooling rate: \( 2^\circ \text{C/s} \) - Time interval: \( t = 10 \, \text{s} \) - Voltage across the bridge: \( V = 5 \, \text{mV} \)
The temperature change after 10 seconds is given by:
\[ \Delta T = \text{Cooling rate} \times t = 2^\circ \text{C/s} \times 10 \, \text{s} = 20^\circ \text{C} \]
The galvanometer shows no deflection, which implies that the Wheatstone bridge is balanced. For the bridge to remain balanced despite cooling, the change in resistance of arm BC must satisfy:
\[ \Delta R = R_{\text{initial}} \times \alpha \times \Delta T \]
Rearranging to find \( \alpha \):
\[ \alpha = \frac{\Delta R}{R_{\text{initial}} \times \Delta T} \]
For no deflection, the change in resistance \( \Delta R \) is such that the balance condition remains. Given the cooling effect on the semiconductor, the resistance decreases.
Using the known values:
\[ \alpha = \frac{\Delta R}{3 \times 10^{-3} \, \Omega \times 20^\circ \text{C}} \]
Given that the value of \( \alpha \) that satisfies the condition for balance is \( -1 \times 10^{-2} \, ^\circ \text{C}^{-1} \).
Conclusion: The value of \( \alpha \) is \( -1 \times 10^{-2} \, ^\circ \text{C}^{-1} \).
The graph shows the variation of current with voltage for a p-n junction diode. Estimate the dynamic resistance of the diode at \( V = -0.6 \) V.
Assertion : In a semiconductor diode, the thickness of the depletion layer is not fixed.
Reason (R): Thickness of depletion layer in a semiconductor device depends upon many factors such as biasing of the semiconductor.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).