The rate constant $K$ for a first-order reaction is given by: \[ K = \frac{1}{t} \ln\left(\frac{100}{100 - \text{completion percentage}}\right) \]
For 99.9% completion:
\[ t_{99.9\%} = \frac{\ln(1000)}{K} \]
For 90% completion:
\[ t_{90\%} = \frac{\ln(10)}{K} \]
Ratio of times:
\[ \frac{t_{99.9\%}}{t_{90\%}} = \frac{\ln(1000)}{\ln(10)} = \frac{3 \ln(10)}{\ln(10)} = 3 \]
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.