The rate constant $K$ for a first-order reaction is given by: \[ K = \frac{1}{t} \ln\left(\frac{100}{100 - \text{completion percentage}}\right) \]
For 99.9% completion:
\[ t_{99.9\%} = \frac{\ln(1000)}{K} \]
For 90% completion:
\[ t_{90\%} = \frac{\ln(10)}{K} \]
Ratio of times:
\[ \frac{t_{99.9\%}}{t_{90\%}} = \frac{\ln(1000)}{\ln(10)} = \frac{3 \ln(10)}{\ln(10)} = 3 \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32