Three voltmeters, all having different internal resistances are joined as shown in figure. When some potential difference is applied across A and B, their readings are $V_1$, $V_2$ and $V_3$. 
Choose the correct option.
To solve this problem, let's understand the configuration of the voltmeters in the circuit provided:
Now, let's verify why this option is correct and others are not:
Thus, the correct answer is: \(V_1 + V_2 = V_3\).
Tip: When dealing with voltmeters in series or parallel, always consider how they split or measure potential difference across points.
Applying Kirchhoff’s Voltage Law (KVL) across the loop: \(V_1 + V_2 - V_3 = 0 \implies V_1 + V_2 = V_3.\)
The Correct answer is: $V_1 + V_2 = V_3$
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.