Step 1: Interpret the “minimum length.”
The shortest road from \(P\) to the line \(QR\) is the perpendicular distance (altitude) from \(P\) to \(QR\). So we need the altitude from \(P\) to side \(QR\) of \(\triangle PQR\).
Step 2: Area of \(\triangle PQR\) via Heron’s formula.
Let the sides be \(a=QR=14\), \(b=PR=15\), \(c=PQ=13\).
Semiperimeter:
\[
s=\frac{a+b+c}{2}=\frac{14+15+13}{2}=21.
\]
Area:
\[
\Delta=\sqrt{s(s-a)(s-b)(s-c)}
=\sqrt{\,21\cdot 7\cdot 6\cdot 8\,}
=\sqrt{7056}=84.
\]
Step 3: Compute the altitude from \(P\) to \(QR\).
If \(h\) is the altitude to side \(QR\), then
\[
\Delta=\frac{1}{2}\cdot QR\cdot h
\ \Rightarrow\
h=\frac{2\Delta}{QR}=\frac{2\cdot 84}{14}=12\ \text{km}.
\]
Final Answer:
\[
\boxed{12.0\ \text{km}}
\]