Question:

Three vectors \( \vec{a}, \vec{b}, \vec{c} \) satisfy: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0},\quad |\vec{a}| = 1,\quad |\vec{b}| = 3,\quad |\vec{c}| = 4 \] Then the value of: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = ? \]

Show Hint

When vector sums are zero, square both sides and expand using dot product properties to derive identities.
Updated On: May 17, 2025
  • 12
  • -12
  • -13
  • 13
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We use the identity for: \[ (\vec{a} + \vec{b} + \vec{c})^2 = 0 \Rightarrow \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) = 0 \] \[ |\vec{a}|^2 = 1,\quad |\vec{b}|^2 = 9,\quad |\vec{c}|^2 = 16 \Rightarrow 1 + 9 + 16 = 26 \] So: \[ 26 + 2(x) = 0 \Rightarrow x = \vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a} = -13 \]
Was this answer helpful?
0
0